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Singularities, structures, and scaling in deformedm-dimensional elastic manifolds
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The crumpling of a thin sheet can be understood as the condensation of elastic energy into a network of
ridges that meet in vertices. Elastic energy condensation should occur in response to compressive strain in
elastic objects of any dimension greater than 1. We study elastic energy condensation numerically in two-
dimensional elastic sheets embedded in spatial dimensions three or four and three-dimensional elastic sheets
embedded in spatial dimensions four and higher. We represent a sheet as a lattice of nodes with an appropriate
energy functional to impart stretching and bending rigidity. Minimum energy configurations are found for
several different sets of boundary conditions. We observe two distinct behaviors of local energy density falloff
away from singular points, which we identify as cone scaling or ridge scaling. Using this analysis, we dem-
onstrate that there are marked differences in the forms of energy condensation depending on the embedding
dimension.
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I. INTRODUCTION

In the last several years, there has been a marked int
in the nature of crumpling@1–11#. Field theories have bee
formulated for the crumpling transition@1#, quantitative laws
have been deduced for the energy scaling of crumpled sh
@3,4,6#, and dynamics of the crumpling process have be
simulated and measured@7#. In this paper, we treat crumplin
as an example of energy condensation.

The crumpling of a thin elastic sheet can be viewed as
condensation of elastic energy onto a network of point v
tices and folding ridges. These structures spontaneo
emerge, for example, when a thin sheet of thicknessh and
spatial extentL@h is confined within a ball of diameterX
,L. For X<L/2 the important length scales becomeh and
X. The elastic energy scaling of vertices and ridges are w
understood@3,6#. In the limit h/X→0, the elastic energy is
believed to condense into a vanishingly small area aro
the ridges and vertices.

There is a significant body of physics literature on ene
condensation, because it is a pervasive feature of conde
matter. This behavior is seen in many systems includ
type-two superconductors@12#, strongly turbulent flow@13#
as well as in mechanical@14# and electrical@15# material
failure. Analogous condensation also occurs in partic
confining gauge field theories@16#. In a mathematical con
text, such condensation often arises in singular perturbat
of nonconvex variational problems@17,18#. A few examples
of such problems are the gradient theory of phase transit
@19#, wherein the bulk of the energy is condensed into
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small neighborhood of the interface between the two pha
Ginzburg-Landau vortices@20# which, among other things
describe type-two superconductors; and solid-solid ph
transitions in crystalline materials~martensitic phases!
@17,21#.

One distinctive aspect of the energy condensation
crumpling is the interesting dependence of the total ene
scaling on boundary conditions. A survey of the elastic e
ergy scaling with thicknessh for a given material with two-
dimensional strain modulusm illustrates this point. For elas
tic sheets that are forced so that they form a single con
vertex or ‘‘d-cone’’ @4#, the only curvature singularity in the
h→0 limit is at the vertex of the cone@4,9,10#. The total
energy of the sheet scales asmh2 ln(X/h) @10# in this situa-
tion. When the boundary conditions are such that there
many vertices and ridges~e.g., confinement!, the elastic en-
ergy is concentrated on the ridges. For confined sheets
typical ridge length is on the order of the confining diame
X. It has been argued that ridges with lengthX have a char-
acteristic total elastic energy that scales asmh5/3X1/3 @22,23#,
and that the total energy of the system scales with the s
exponent. A final example is the delamination and blister
of thin films, which is described by the same energy fun
tional as the crumpled sheet but with different boundary c
ditions @24–32#. In this circumstance, the sheet develops
self-similar network of folding lines, whose lengths gro
smaller as we approach the boundary@31,32#, and the total
energy of the sheet scales asmh ~with a finite fraction of the
energy concentrating in a narrow layer near the boundary
a width that also scales ash @32#!.

Thus, by varying the boundary conditions, the same
ergy functional can lead to significantly different forms
energy condensation, with different energy scalings and
ferent types of energy bearing structures. This behavio
r-
©2001 The American Physical Society03-1
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contrary to the widely held view that singularities are ‘‘lo
cal’’ phenomena. Our goal is to study this phenomenon, w
a hope of understanding the factors that determine the na
of energy condensation in general systems. In this paper
study elastic energy condensation in spatial dimensi
above three. Our motivation is to understand how the sca
behavior of crumpled sheets and the topology of energy c
densation networks generalize form-dimensional elastic
manifolds ind-dimensional space. To this end, our numeri
study explores energy condensation in two-sheets in thre
four dimensions and three-sheets in dimensions 4–6, sub
to boundary conditions which are akin to confinement.

Our previous work@33,34# showed that the notion of a
elastic membrane extends naturally to different dimensio
Such membranes have an energy cost for ‘‘stretching’’ de
mations that change distances between points in
m-dimensional manifold and have an additional cost
bending into the embedding space. When these costs are
tropic, the material properties may be expressed in terms
stretching modulus, a bending stiffness, and a‘‘Poisson’s
tio’’ of order unity. As in two-dimensional manifolds, th
ratio of bending stiffness to stretching modulus yields a ch
acteristic length. Indeed, if the manifold is a thin sheet
isotropicd-dimensional material, the thicknessh of the sheet
is a numerical multiple of the square root of the modu
ratio that may be readily calculated@33#.

Our previous paper@35# identified two regimes of dimen
sionality with qualitatively different response to spatial co
finement. The authors considered an elasticm-dimensional
ball of diameterL geometrically confined withind-spheres of
diameter less thanL/2. When the embedding dimensiond is
twice the manifold dimensionm or more, the state of lowes
energy is one of nonsingular curvature, with stretching e
tic energy indefinitely smaller than bending energy. For
complementary cases whered is smaller than 2m, the defor-
mation is qualitatively different. Such manifolds cannot
geometrically confined in a sphere of diameter smaller t
L/2 without stretching or singular curvature. In ordinary tw
sheets (m52) in three dimensions energy condenses in or
to reduce the stretching energy of spatial confinement.
degree of energy condensation depends on the stretc
moduli through the thicknessh defined above. In three
sheets, singularities or stretching are required in four or
embedding dimensions. Previous work@34# confirmed that
for three-sheets confined in four dimensions, energy c
denses into a network of linelike vertices and planar ridg
We seek to understand how the degree of energy conde
tion associated with confinement changes with increas
spatial dimension. We expect that less energy will be
quired to confine a three-sheet within a five-dimensio
sphere than within a four-dimensional sphere, but we do
know a priori how the form of energy condensation w
differ between these two cases.

We begin our study by giving a brief review of elast
theory in Sec. II. Then, Sec. III quantifies our definitions
‘‘folding lines’’ and ‘‘vertices’’ within a framework of iso-
metric embeddings, and in Sec. III A we propose a rule
the topological dimensionality of vertices in energy conde
sation networks. In Sec. IV, we present analytical estima
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for the degree of energy condensation in the crumpled st
Building on existing knowledge, we make predictions for t
scaling of energy density with a distance away from the
gions of greatest elastic energy. We identify two distin
forms of energy scaling, which we call ridge scaling a
cone scaling~the names are based on the geometry th
scalings correspond to in ordinary crumpling of two-sheet
three dimensions!. Section V describes how we represe
elastic manifolds numerically.

Then we present our numerical findings. We begin in S
VI with simulations of sheets confined by shrinking ha
wall potentials. In this qualitative study, the embedding
mension seems to affect the crumpled structure significan
The condensation of energy appears to become progress
weaker as the embedding dimension is increased, culmi
ing in no condensation whend reaches 2m. Numerical diffi-
culties prevented any significant quantitative analysis of
geometrical confinement data. The need for better data
tivates the simpler systems we simulated next.

Section VII describes our studies ofm-sheets with two
disclinations. Disclinations are made by removing wed
shaped sectors from the sheet and then joining the edge
each wedge. The essential feature of a disclination is th
induces the sheet to form a cone, with lines of null curvat
converging at a vertex. It has been shown that whentwo
disclinations are introduced into a two-sheet in three dim
sions, the elastic energy of deformation between the dis
nations condenses along a ridge joining the two vertices@3#.
These ridges appear completely similar to those in geom
cally confined sheets and exhibit the same energy sca
@22#. In our present study, simulated two-sheets in three
mensions formed the familiar ridges, but two-sheets with
same boundary conditions in four-dimensional space
much lower total elastic energies and very different ene
distributions. Similarly, three-sheets in 4 spatial dimensio
formed ridges closely analogous to those seen in two-she
but for three-sheets in five dimensions no ridges were e
dent. Also, nonparallel disclination lines in three-sheets
pear to generate further disclinationlike lines in four spa
dimensions but not in five.

Next, in Sec. VIII we detail our simulations of three-to
allowed to relax ind dimensions. The benefit of this geom
etry is that we expect it to cause energy condensation with
the need to introduce disclinations. Observing that a tw
torus cannot be smoothly and isometrically embedded i
space of dimensionality less than four, we expect an ela
sheet with the connectivity of anm-torus embedded in a
space of dimensiond,2m will relax to a configuration with
regions of nonzero strain~condensed into a network o
ridges!. We found that a three-torus ind54 spontaneously
forms a network of planar ridges that intersect in vertex s
gularities similar to those in the geometrically confin
sheets. Ind55, the three-torus forms a point-like vertex ne
work with no observable ridges. The energy scaling a
presence or absence of ridges mirrored the behavior of sh
with disclinations in Sec. VII. The complexity of the crum
pling network decreases with increasing embedding dim
sion, with spontaneous symmetry breaking evident ford
3-2
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SINGULARITIES, STRUCTURES, AND SCALING IN . . . PHYSICAL REVIEW E65 016603
55. As expected, the elastic energy distribution is homo
neous ford>6.

Finally, in Sec. IX we present the results of simulations
a ‘‘bow configuration,’’ in which the center points of oppo
site faces of a three-cube were attached and the cube
embedded in four or five spatial dimensions. With prop
manipulation of initial conditions, the cube embedded in fi
dimensions forms a single, pointlike vertex at its center. T
energy density scaling away from this singularity agrees w
predictions for a novel kind of elastic structure that is a g
eralization of a simple cone. By contrast, the cube embed
in four dimensions forms a set of linelike vertices and pla
ridges that are well modeled by our present understandin
three-dimensional crumpling.

We conclude by discussing the observed energy sca
properties of crumpled elastic sheets. We have develop
means to identify the presence of ridges inm-sheets based
solely on their spatial elastic energy distribution. Using t
analysis of energy distributions, we demonstrate that fold
lines in greater thanm11 dimensions have different energ
and thickness scaling properties than inm11, but ridges in
m11 seem to have the same scaling regardless ofm. We
found that ridge scaling dominates the crumpling ofm-sheets
in m11 dimensions, while cone scaling was the only fo
of scaling witnessed in dimensions greater thanm11. Dif-
ferences in the morphology of higher-dimensional foldi
lines is discussed briefly. The local structure of these fold
very different from that of the familiar ridges found in two
sheets in three-dimensional space. We also note that
simulational findings strongly support the new rule for t
topology of elastic energy bearing structures in higher
mensions, which is presented in Sec. III A. We end with
brief discussion of the mathematical questions raised by
nonlocal character of energy scaling in crumpled sheets.

II. ELASTIC m-SHEETS IN d-SPACE

In this section, we review the elastic theory ofm-sheets in
d-space as it is presented in Ref.@33#. In analogy with the
elastic two-sheets of everyday experience, anm-sheet in
d-dimensional space is an elastically isotropicd-dimensional
solid that has a spatial extent of orderL in m independent
directions andh!L in the remainingd2m directions. Spe-
cifically, our m-sheet is given byS3Bh

d2m,Rd, where
S,Rm is a set that has a typical linear sizeL in all directions,
andBh

d2m is a (d2m)-dimensional ball of diameterh.
We are considering embeddings of them-sheet in a

d-dimensional target space. We first consider the lowest
ergy embedding in a sufficiently larged-dimensional space
say all ofRd, so that the sheet is not distorted in the emb
ding. We assume that the undistorted sheet has no intri
strains, curvatures or torsions~twists!. Since there are no
curvatures or torsions, picking an orthogonal basis ofd2m
vectors for the thin directions at one point on the sheet,
then parallel transporting these vectors to every point on
sheet gives an orthonormal set of basis vectors for ev
point of the sheet. We can, therefore, describe the geom
of the undistorted sheet, which is ad-dimensional object, by
the m-dimensional center surfaceS that gives the geometry
01660
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in the long directions, and the orthonormal basis vectors
the thin directions, that describes the geometry in the t
directions. These basis vectors for the thin directions giv
normal frame field to the embedding of the center surfa
since they are all orthogonal to each of the long directions
the sheet. Further, since the basis vectors at different po
are related by parallel transport inRd, the normal frame field
is torsion free.

For small distortions, we can continue to describe the e
bedding of them-sheet by giving the embedding of the ce
ter surfaceS and by specifying the normal frame field@33#.
The rotational invariance in the thin directions implies th
the torsion of the sheet in the embedding cannot couple
the geometry of the center surface. Since the sheet ha
intrinsic torsion, if there are no applied torsional forces, t
normal frame has to remain torsion free. The torsion degr
of freedom, therefore, drop out of the energetic consid
ations that will determine the geometry of the sheet@33#.
Therefore, we can leave out the thin directions and determ
the energy of the embedding through an effective Lagrang
that only depends on the long directions, i.e., the geometr
center surface of the sheetS, as embedded in thed-space
@33#. This approach puts powerful tools of differential geom
etry at our disposal. Numerically, this treatment greatly
creases the efficiency of our simulations by decreasing
dimension and required grid resolution of our lattice. In t
limit h/L!1 and for relatively small elastic distortions of th
material, this description is highly accurate.

We use Cartesian coordinates in the center surface, w
can be viewed as the setS,Rm. We refer to these coordi
nates as the material coordinates, and quantities referre
the material coordinates will be denoted by Roman s
scripts, e.g.,i , j ,k,l . The configuration of the sheet is give
by a vector valued functionsrW(xi) with values in the
d-dimensional target space. We also denote thed2m normal
vectors in a choice for an orthonormal, torsion-free frame
nW (a), with a Greek superscript that takes values 1,2, . . . ,d
2m. Such a choice exists by our previous consideration

The strain energy densityLs due to the distortions within
the m-sheet is given by the conventional expression@36# in
terms of the Lame´ coefficientsl andm,

Ls5mg i j
2 1

l

2
g i i

2 , ~1!

whereg i j is the strain tensor, defined by

g i j 5
1

2
S ]rW

]xi
•

]rW

]xj
2d i j D .

The strain tensor quantifies the deviation of the metric ten
of the embedded sheet from its intrinsic metric tensor. H
and henceforth, repeated indices~both Greek and Roman!
are summed over all the range of their allowed values.

The nonzero thickness of them-sheet leads to an energ
cost for distortions of the center surfaceS in a normal direc-
tion, i.e., bending distortions. A measure of the bending
the manifold at any point is the extrinsic curvature tens
3-3
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kW i j (xi), which is the projection of the second derivativ
] i] j rW into the normal frame. The component of the extrin
curvature in the normal directionnW (a) is given by

k i j
(a)5

]2rW

]xi]xj
•nW (a). ~2!

As shown in Ref.@33#, if the strains are small and the cu
vatures are small compared to 1/h, the energy density of the
bending distortionsLb is given by
ti
ro
he
rg
ia
tr

g

n
e
i-
ti

d
p
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Lb5BFk i j
(a)k i j

(a)1
l

2m
k i i

(a)k j j
(a)G . ~3!

The bending modulusB in the above equation is determine
by the Lame´ coefficientm and the thickness of the sheeth
through the relation@33#

B5mh2/h~m,d!,

whereh(m,d) is given by
h~m,d!5
d2m

Sd2m
35

2

3
d2m51

p

4
d2m52

1

d2m12
b~3/2,d2m22!Sd2m21 d2m.2

, ~4!
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where Sa52pa/2/G(a/2) is the area of a unit sphere ina
dimensions andb(a,b)5G(a)G(b)/G(a1b) is the beta
function. Form53 andd54,5,6, h(m,d)53,4, and 5, re-
spectively.

For studying the geometrical confinement of an elas
m-sheet, the confining forces are assumed to be derived f
a potentialVc(rW) in the embedding space. The energy of t
m-sheet is the sum of the bending energy, the strain ene
and the energy due to the spatially confining potent
Therefore, the total energy is given in terms of the geome
of the center surfaceS by

E5mE
S
dmxFh2

h S k i j
(a)k i j

(a)1
l

2m
k i i

(a)k j j
(a)D1S g i j

2 1
l

2m
g i i

2 D
1

Vc„rW~xi !…

m
G , ~5!

whereh5h(m,d) as defined in Eq.~4!.
The configurationrW(xi) of the sheet in the embeddin

space is obtained by minimizing the energyE over the set of
all allowed configurations. A~local! minimum energy con-
figuration is obtained by requiring that the variationdE
should vanish to the first order for an arbitrary~small! varia-
tion drW of the configuration. Since the energy density co
tains terms ink i j , that involve the second derivatives of th
function rW(xi), the Euler-Lagrange equations for the minim
zation problem are a system of fourth-order nonlinear ellip
equations on the domainS. Very little is known about the
rigorous analysis of such equations. Therefore, we will stu
the geometrical confinement problem numerically, by a
proximating the integral in Eq.~5! by a sum over a grid, and
c
m

y,
l.
y

-

c

y
-

minimizing the resulting energy by a conjugate gradie
method@37#, as we outline below.

Our goal is to study the scaling behavior of the structu
on which the energy concentrates as the thicknessh→0. The
variational derivative of the potential term is given by

d

drW
E

S
dmxVc„rW~xi !…5¹ rWVc„rW~xi !….

This term leads to a strongly nonlinear coupling between
configuration of the minimizer and the stresses and bend
moments in the sheet. Consequently, the conditions for
chanical equilibrium are now ‘‘global’’ and the stresses a
bending moments determined by the local strains and cu
tures should balance a term that depends on the globa
ometry of the configuration. In addition to complicating th
analysis, this introduces length scales besides the thickneh
into the problem. This in turn can lead to the lack of simp
scaling behavior at equilibrium for the structures in ge
metrically confined sheets. Note, however, that this is not
case for confinement in a hard wall potential

Vc~rW !5H V0 for rWPV

1` otherwise,

whereV is a given set inRd. The configuration of the mini-
mizer is now restricted to be insideV and the gradient ofVc
is zero here, so that there is no coupling between the c
figuration of the minimizer and the stresses and the bend
moments in the sheet, in the parts of the sheet that are in
interior of V.

One way to get around this problem is to study the co
figurations where the energy concentration is due to
boundary conditions imposed on the sheet, and not due t
3-4
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external potential. If the imposed boundary conditions do
introduce any new length scales, we would then expect to
structures and scalings that are generic, i.e., independe
the precise form of the imposed boundary conditions. Thi
analogous to the minimal ridge@22# that is obtained by im-
posing boundary conditions on a two-sheet. Although
minimal ridge is obtained with a specific boundary conditio
the scaling behaviors of the ridge are generic and are s
with a variety of boundary conditions.

In this study we first determine the generic structures
scalings that we expect to see for anm-sheet in
d-dimensional space. We also numerically verify our pred
tions for these scalings by the configuration of an embed
m-sheet with a variety of boundary conditions—sheets w
disclinations, sheets with a toroidal global connectivity, a
sheets in a ‘‘bow’’ configuration. In all these cases, the ela
energy is given by

E5mE
S
dmxFh2

h S k i j
(a)k i j

(a)1
l

2m
k i i

(a)k j j
(a)D1S g i j

2 1
l

2m
g i i

2 D G .
~6!

However, the domain of integrationS is no longer a subse
of Rm. It is a domain with singularities in the case of she
with disclinations or in the ‘‘bow’’ configuration, or a se
whose global topology is different fromRm, in the case of
the sheets with toroidal connectivity. Note that this ene
functional is also applicable to the confinement in a h
wall potential, since, without loss of generality, we can
V050 for rW in V, and impose the constraint of the hard w
potential through the conditionsrW(xi)PV for all xiPS. Con-
sequently, the energy is still given by Eq.~6!, and the energy
condensation is due to the additional constraints that are
posed, that are analogous to the boundary conditions con
ered above.

We can rewrite the energy using the in-plane stressess i j

and the bending momentsMi j
(a) that are conjugate to th

strainsg i j and the curvaturesk i j
(a) , respectively. The conju

gate fields are given by the variational derivatives

s i j 5
dE

dg i j
52mg i j 1ld i j gkk

and

Mi j
(a)5

dE
dk i j

(a)
5

h2

h
~2mk i j

(a)1ld i j kkk
(a)!,

where we have taken the variational derivatives as tho
the fieldsg i j andk i j

(a) are independent. The energy can no
be written as

E5
1

2ES
~Mi j

(a)k i j
(a)1s i j g i j !d

mx.

Although the energy functionalE does not explicitly couple
the strains in the manifolds to the curvatures@see Eq.~6!#,
they are related by geometric constraints since they are
01660
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defined by derivatives of the embeddingrW(xi). Since the
m-sheet is intrinsically flat, the Riemann curvature tensor
the embedding of the center surface can be expresse
terms of theextrinsic curvaturek i j

(a) by the Gauss equation
@38#

Ri jkl @k#5k ik
(a)k j l

(a)2k i l
(a)k jk

(a) .

However, the Riemann curvature is intrinsic to the geome
of the center surface, and can be written in terms of
strains as

Ri jkl @g#52g ik, j l 1g i l , jk2g j l ,ik1g jk,i l 1O~g2!.

Consequently, the curvaturesk i j
(a) and the strainsg i j are con-

strained in order thatRi jkl @k#5Ri jkl @g#.
From the symmetries of the Riemann tensor, it hasm(m

21)(m22m12)/8 independent components. Howeve
since it can be written purely as a function of the straing i j ,
it can only have as many independent degrees of freedom
the strain itself. As noted in Ref.@33#, the strain tensor is
symmetric, and further it satisfiesm additional conditions
from the balance of in-plane stresses. Consequently,
strain hasm(m21)/2 independent components, and th
yields m(m21)/2 independent constraints on the extrins
curvatures.

For m52, i.e., for two-sheets, there is one constraint, a
this is most economically expressed through the Gaus
curvature of the sheet@33#. In terms of the extrinsic curva
tures, the Gaussian curvatureG is given by

G@k#5k11
(a)k22

(a)2k12
(a)k12

(a) ,

and in terms of the strains, the Gaussian curvature is gi
by

G@g#52g11,2212g12,122g22,111O~g2!.

We can impose the constraintG@k#5G@g# through a
Lagrange multiplierx, so that the augmented energy fun
tional is now given by@33#

Ex5E
S
dmxF1

2
~Mi j

(a)k i j
(a)1s i j g i j !1x~G@g#2G@k#!G .

Taking the variations with respect tog i j , x andk i j
(a) give

s i j 5d i j ¹
2x2] i] jx⇒] is i j 50,

G@g#5G@k#,

and ] i] jM i j
(a)5s i j k i j

(a) ,

which are respectively the balance of the in-plane stres
the Geometric~or First! von Karman equation and the Forc
~or Second! von Karman equation@33,39#. The first equation
also shows that the Lagrange multiplierx is the scalar stress
function of Airy @40#.
3-5
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In this paper, we will mainly focus on the casem.2. For
m.2, an economical way to impose the geometric constr
relating the extrinsic curvatures to the strains is through
Einstein tensor@33#

Gi j 5Rik jk2
1

2
d i j Rlklk ,

which hasm(m21)/2 independent components since it
symmetric and satisfies the contracted Bianchi identity@41#

] iGi j 50.

In terms of the extrinsic curvature,

Gi j @k#5k i j
(a)kkk

(a)2k ik
(a)k jk

(a)2
1

2
d i j @k l l

(a)kkk
(a)2k lk

(a)k lk
(a)#,

~7!

and to the first order in the strains

Gi j @g#52g i j ,kk1g ik, jk2gkk,i j 1gk j ,ik1d i j @g l l ,kk2g lk,lk#.

~8!

As in the casem52, the constraintGi j @k#5Gi j @g# is incor-
porated through a tensor Lagrange multiplierx i j . The aug-
mented energy functional is given by

Ex5E
S
dmxF1

2
~Mi j

(a)k i j
(a)1s i j g i j !1x i j ~Gi j @g#2Gi j @k#!G .

Taking the variations with respect tog i j , x i j , andk i j
(a) give

the balance of in-plane stresses

] is i j 50,

the Geometric von Karman equation

Gi j @g#5Gi j @k#, ~9!

and the Force von-Karman equation

] i] jM i j
(a)5s i j k i j

(a) , ~10!

respectively@33#. In the casem53, the Lagrange multiplier
x i j is the Maxwell stress function@42#.

III. STRUCTURES IN ELASTIC m-SHEETS

We will now investigate the minimum energy configur
tions of the sheet with external forcing. As we discuss
earlier, the sheet can be forced either by an external pote
Vc(rW) @see Eq.~5!# or by restricting the set of admissibl
configurations by appropriate boundary conditions@Eq. ~6!#.
Since confinement by a hard wall potential of radiusr 0 is
also given by the energy functional in Eq.~6! where the
admissibility condition is thatirW(x)i<r 0 for all xPS, we
will restrict our attention to the energy functionalE in Eq.
~6!.

From Eq. ~6!, we see that the only length scales in t
energy functional are the thicknessh and the length scaleL
01660
nt
e

d
ial

that is associated with the center surfaceS. Since the effec-
tive bending modulusmh2/h goes to zero ash→0, except in
the vicinity of regions with large curvature, the large sca
@O(L)# behavior of crumpled sheets should be determin
almost entirely by the stretching energy functional

Es5mE
S
~g i j

2 1c0g i i
2 !dmx,

which penalizes the deviation of the configuration from
isometry. Indeed, crumpled two-sheets in three dimensi
can be described as a set of nearly isometric regions boun
by areas of large curvatures that include vertices and bou
ary layers around folds. Since the curvature in these reg
is large, the bending energy in this region will continue
remain relevant ash→0. As h→0, the width of, and the
strain in, the boundary layer around folds approaches z
and the only nonisometric regions are the vertices.

For the remainder of this paper we assume that in
dimension, the minimum energy configurations of crump
m-sheets converge in theh→0 limit to configurations that
are locally isometric and have smooth, well-defined cur
ture almost everywhere. In this view, the regions of elas
energy concentration in them-sheets converge in theh→0
limit to a defect setin the manifold that is not locally smooth
and isometric, and this defect set is as small as poss
relative to the boundary conditions imposed on the sh
The limiting procedure that connects the defect set to
energy concentration regions is elaborated upon in S
III A.

These assumptions give us descriptive tools to classify
elastic energy structures in higher-dimensional crump
sheets in terms of well-defined concepts of isometry. M
importantly, the identification of crumpling with isometri
embedding will allow us to make predictions for the dime
sionality of energy condensation regions inm-sheets form
.2 based on geometric results on isometric immersions.
will present these arguments in Sec. III A and the numeri
studies reported in Secs. VII–IX appear to support these
dictions.

A. Dimensionality of defects

In this section we define a certain type of singular
called a vertex that must exist in confinedm-sheets. We then
argue that a vertex must have a dimensionality of at le
2m2d21. In previous work@35# we showed that am-sheet
embedded smoothly and isometrically into a space of dim
sion less than 2m must have straight lines in the sheet m
terial, which extend across the sheet and remain undeform
Specifically, there exists through any pointp at least one
straight line in the undistortedm-sheet S, which ~1! is
straight and geodesic in the embedding spaceRd, and ~2!
extends to the boundary ofS. We will denote this result as
Theorem 1. Theorem 1 implies that am-sheet of minimum
diameterL cannot be confined to ad-dimensional ball of
radius smaller thanL/2, if d,2m, where the minimum di-
ameterL is given by
3-6
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L52 max
pPS

@max
r .0

$r :B~p,r !#S%#,

andB(p,r ) is them-dimensional ball of radiusr centered on
p. By taking points far from the boundary ofS, we may
identify lines roughly of the sizeL/2 or longer. It is clearly
impossible to confine the sheet to a region smaller than s
a line.

Observations of embedded sheets and generalizing
proof from Ref.@35# lead us to conjecture the following ex
tension to Theorem 1. We conjecture that through any poip
there is a (2m2d)-dimensional subsheet@48# R such that

~1! R is totally geodesic in the sheet.
~2! The image ofR under the embedding is totally geod

sic in Rd. This together with item 1 implies that the sheet
flat.

~3! If the point p is a distanceX from the boundary ofS,
then the subsheet R through p contains a
(2m2d)-dimensional ball of diameterX.

We denote these assertions as Conjecture 1. The subs
R can be readily identified for a simple cone in a two she
For any pointp on the cone,R is the half-line extending from
the apex throughp. Figure 1 illustrates an example of

FIG. 1. Flat subspacesR in a crumpled sheet. The figure show
sections of three parallel planes of a thin three-cube confined in
dimensions by boundary conditions discussed in Sec. IX. This s
is nearly isometric over most of its volume, as anticipated in S
III A. The arguments of this section suggest that such sheets sh
have a nearly-flat two-dimensional subsheetR through any pointp.
TheR for the indicated pointp is shown as a solid grid. The nearl
flat subsheetR8 for a different pointp8 is shown as a dashed grid
The adjacent boundaries ofR and R8 meet in a nearly straight
one-dimensional region. We identify this region as a vertex.
01660
ch

he

ets
t.

three-sheet in which the subsheetsR are two dimensional.
We may in principle confine anm-sheet isometrically

within a ball of arbitrarily small size by removing subsets
S so that it has ‘‘interior’’ boundaries. We shall denote th
removed part as thedefect setD. By removing sufficiently
many subsets, we can assure that all points of the resu
sheetS8 are as close to the~interior! boundary as we like. In
order that the remaining region be isometric, further con
tions are needed: Conjecture 1 forces some of the remo
regions to have a dimensionality greater than some limit
we now show.

We first confine a convexm-sheetS within a ball of di-
ameterX much smaller than the minimum diameterL of the
sheet. As indicated above, this confinement requires strai
singularities. We now remove a defect setD from the sheet
sufficient to allow the remaining sheetS8 to be isometric, as
illustrated in Fig. 2. We choose a pointp further thanX from
the originalS boundary, as measured along the sheet. T
subsheetR at point p can have a minimum diameter n
greater thanX; otherwise this flat subspace would not fit in
the confining ball. Thus the original boundary ofS cannot
touch the boundary ofR; R must be bounded everywhere b
D. Now, sinceR is a (2m2d)-dimensional set, at least pa
of its boundary must have dimension at least (2m2d21).
~The boundary may also have additional parts of lower
mension, but we ignore these.! The setD adjacent to this
boundary must have at least this dimension as well. Th
most R’s in the sheet must be bounded over part of th
boundary by defect setsD whose dimension is (2m2d
21) or more.

These defect sets in strictly isometric sheets have im
cations for the confinement of real elastic sheets. To see
we repeat the confinement procedure above takingS to be an
elastic sheet of thicknessh. We anticipate that regions o
concentrated strain will appear, as they do in ordina
crumpled two-sheets. Following the procedure used abo
we remove part ofS near the regions of greatest strain, su
as the intersection ofR and R8 in Fig. 1. Specifically, we
remove sets of minimum diameterd, and denote the set o
removed pointsDd . We remove the smallest set such that t
remaining sheetSd8 becomes isometric in the limit ash→0.
We now reduce the minimun diameterd of our set and repea
the procedure. We suppose that the new defect setDd is a
subset of the old one, and that we are led to a well-defi

ur
et

c.
ld
e
FIG. 2. ~a! Illustration of the regionsD, K, Dd , andKd for a two-sheet. The points are a possible setD and the shaded circles are th
correspondingDd . The solid lines are a possible setK2D, and the area within the dashed lines are the correspondingKd2Dd . ~b!
Illustration of a potential way to soften the folding around a region inK.
3-7
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DIDONNA, WITTEN, VENKATARAMANI, AND KRAMER PHYSICAL REVIEW E 65 016603
limiting set D as d→0. For eachd we may consider the
boundary of R for a given point p. Supposing that this
boundary also behaves smoothly, we infer that it retains
dimensionality of at least 2m2d21 inferred above. Thus
the limiting defect setD should also have at least this dime
sion. Returning now to the full elastic sheetS, we expect the
strain to be concentrated on the defect setD. The example of
Fig. 1 suggests thatR sets are bounded by regions of hig
strain, whose dimension has the minimal value 2m2d21.
The numerical work in later sections gives more system
evidence of these strained regions. We shall denote the
iting setD as thestrain defect setand denote each connecte
part of D as avertex.

Although the elastic sheetSd8 becomes isometric ash
→0, further singularities can develop asd→0. Ordinary
two-sheets in three-space show this behavior, as illustrate
Fig. 2. Here the minimal vertex dimension 2m2d21 is 0.
The setDd consists of the four shaded disks: each disk c
stitutes a vertex. Removing these disks permits strain-
confinement to a fraction of the size of the sheet. Howe
the strain-free deformation develops large curvature asd be-
comes small. The diverging curvature is concentrated
lines joining the vertices. Similar diverging curvature mu
occur in intact sheets ash→0. We denote such regions byK,
which we call thecurvature defect set. For completeness, w
define a setKd that contains the regions of high curvatu
aroundK for d.0. For intact sheets, we expect the strain
be significant in the regionD but very small outside of it—
noting that the geometric von Karman equation, Eq.~9!, re-
lates large gradients in the strain to large curvature, we c
clude that D must be a subset ofK. We denote each
connected piece ofK2D as a fold in the crumpled sheet
The relationship between these folds and stretching rid
@23# is discussed in the next section.

Thus far we have considered effects due to confinemen
a small ball inRd. We expect similar effects if we impos
other constraints that reduce the spatial extent of the em
ded sheet. We expect defect setsD andK like those above to
form spontaneously here as well. Our numerical investi
tions reported below do indeed show such behavior.
compare our expectations with the numerical findings in S
X.

IV. ENERGY SCALING

We now return to the consideration of sheets with sm
h.0. We consider sheets that are thin enough that the str
far away from the singular set are much less thanO(1). This
is the range of thicknesses that is normally considered in
study of thin two-sheets@6,22#. In this range the preferred
configuration of a two-sheet is well described by asympt
cally matching nearly isometric embedding over most of
sheet to finite boundary layers around the singular seK
~within which the strains and curvatures may become la
on the scale ofL, the manifold size!. We maintain the as-
sumption that energetically preferred embeddings will
hibit near isometry outside the singular set form-sheets in
d-dimensional space, and view the singular set as the su
of the material manifold onto which elastic energy conden
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as h→0. We wish to study the degree of energy conden
tion onto these elastic structures as a function of the mate
and embedding dimensions and the elastic thicknessh. In
this section, we show how the scaling of elastic energy d
sity with volume away from the condensation regions can
used to quantify the degree of energy condensation
crumpledm-sheets. We distinguish two cases for the stru
tures involved in crumpling. In the first case,K5D and sin-
gular curvature occurs only at vertices. In the compliment
case,K2DÞB, vertices are connected by folds in theh
→0 limit. We show that these two cases have distinct
energy scaling signatures when two-sheets are crumple
three-dimensions. Anticipated scaling exponents for gen
crumpling are inferred by analogy to lower-dimension
crumpling.

There are three types of data we may use to analyze m
mum energy sheet configurations: the detailed embedd
coordinates and the bending and stretching energy dens
in the manifold coordinates. To see whether energy has c
densed in our simulated sheets, we first identify regions
high energy concentration by plotting surfaces of const
bending or stretching elastic energy in the material coo
nates. Figure 3 illustrates, for the case of a two-sheet in th
dimensions, how surfaces of constant bending energy h
light the energy-bearing regions of the sheet. We then loo
the coordinate information to associate regions of ene
concentration with either vertices or folds.

For the remainder of our analysis we consider the ene
density data only as a function of volume fraction, indepe
dent of position. This removes any ambiguity in defining t
center points of the high-strain regions aroundD, and it pro-
vides a natural framework for defining the degree of ene
condensation. Let the variableF represent the volume frac
tion in the manifold coordinates measured from the regio
of highest to lowest energy density, 0<F<1. Thus,F can
be written as

F~L!5
1

Vtotal
E

L(xW8)>L
dmx8, ~11!

where L5Lb1Ls is the elastic energy density defined
Eqs.~1! and ~3!, and

Vtotal5E
S
dmx8.

Surfaces of constant energy in the manifold coordinates
also surfaces of constantF. Inverting Eq.~11! associates a
volume fraction with each observed value of the local elas
energy density. We can write the total energyE in the mani-
fold as

E5E
0

1

dF8L~F8!. ~12!

We say the energy iscondensedin a volume fractionFc if
for F.Fc the energy densityL falls away faster thanF21.
If this is the case, then the upper limit of integration can
pushed to infinity without changing the value of the integ
3-8
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FIG. 3. A cone and a ridge formed with disclinations. Image~a! shows a minimal elastic energy embedding for a two-sheet with
disclination in three-dimensional space. The sheet was 503100 lattice units in size and had an elastic thickness of;1/100 in lattice units.
The disclination was formed by folding one edge at its center point and attaching the two halves. The minimal energy configuration
Plot ~b! shows surfaces of equal bending energy for the sheet in~a!, plotted in its material coordinate system. Image~c! shows a minimal
elastic energy embedding for a two-sheet withtwo disclinations in three-dimensional space. The sheet was 1003100 lattice units in size and
had an elastic thickness of;1/10 in lattice units. The minimal energy configuration is a ridge. Plot~d! shows surfaces of equal bendin
energy for the sheet in~c!, plotted in its material coordinate system. In each image, heavy lines indicate edges of the sheet that wer
together to make the disclinations.
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by more than a finite fraction. By repeating this analysis
the bending energyLb or the stretching energyLs , we may
characterize the condensation of these forms of energy i
vidually.

We may now make predictions for the elastic energy sc
ing exponents based on our knowledge of the structu
found in crumpled sheets. We first consider the case wh
the setK5D. In the familiar crumpling of two-sheets in
three dimensionsK5D when the sheet contains a sing
vertex and the configuration outside the vertex is conical
any dimension, it is easy to see that far away fromD the
conformation should be independent of the small len
scaleh. Far away from the curvature singularity, there is
intrinsic length scale, so simple dimensional analysis tells
that the curvature must be a numerical multiple ofr 21,
where r is the distance from the vertex. The preferred e
bedding is thus a simple generalization of a cone, w
straight line generators radiating from a central vertex a
transverse curvatures decreasing as 1/r along the generators
The cone configuration is isometric outside the vertex foh
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50, but for h.0 it acquires small but finite strain. Dimen
sional analysis of the force von Karman equation, Eq.~10!,
for a curvature of the formC(r ,u)5g(u)/r yields strain
scaling of the formh2/r 2 for nearly isometric embeddings
Thus, for energetically preferred embeddings, the bend
and stretching energy densities should scale as 1/r 2 and
h2/r 4, respectively. We can express this energy scaling
terms of the volume fractionF by finding how F grows
with r. In any principal material direction, smooth curvatu
of orderC will typically persist over a length of order 1/C. In
a three-sheet, the volume of high energy density surround
an energetic cone generator will therefore grow asr 2 if the
curvature in one material directions transverse to the gen
tor dominates, or asr 3 if the curvatures in both transvers
directions are on the same order. The bending energy den
will respectively scale asF21 or F22/3. Since the strain
along a generator dies twice as quickly as the curvature,
stretching energy density will correspondingly scale asF22

or F24/3. Thus we surmise that conical scaling has the ty
cal form
3-9
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L b;F2p,
~13!

L s;F22p,

wherep52/(11n), andn is an integer equal to the numbe
of transverse curvature directions along energetic cone
erators. In all the geometries accessible to two or thr
sheets, the stretching energy is condensed while the ben
is not—this is not the case in all higher dimensions, wh
the value ofn can be greater than 3 and the stretching ene
not condensed.

We now consider configurations that haveK2DÞB. We
have denoted each connected piece ofK2D as afold in the
previous section. At this point we need to make a distinct
between folds and ridges. For two-sheets in three dimens
with h.0, folds have an energetically preferred local stru
ture. We describe folds in this context as ridges, a term
encompasses both the geometric and energetic structur
general crumpling, we do not knowa priori whether the
local structure around folds will be similar to that in lowe
dimensional crumpling, so we must make our definition o
ridge more precise. Since we already have a geometrica
scriptor for folds, we use the term ridge to describe a cer
kind of energetic structure associated with folds. The gen
alization of a ridge is a boundary layer around a fold who
energy scaling depends on two length scales—the ela
thicknessh of the sheet and the lengthL of the fold. Clearly,
in the thin limit these are the only two length scales that c
be important around the fold. Conversely, there must be
least two length scales if there is to be any nontrivial scal
of the ridge profile with thicknessh. The presence of two
length scales allows for a balance between the coupled b
ing and stretching energies, which is also a hallmark
ridges~and could be used as an alternative equivalent d
nition!

For two-sheets in three dimensions, the conditionK2D
ÞB occurs, e.g., when there are two vertices joined b
ridge, as in Fig. 3. It is well known@22# that the elastic
energy density in the region surroundingK that encompasse
a ridge is less than that at vertices~the region surroundingD)
but much greater than that in the region ofS2K away from
the energy condensation structures. Ridges begin and e
vertices, with the elastic energy density falling smooth
along the ridge length away from each vertex. This impl
that when ridges are present, the scaling ofL(F) at values of
F much less than 1 but large enough to fully contain
vertices will be determined by the parts of ridges that
closest to vertices. Ridges are also known to have a com
cated spatial structure, but we assume that the ridge solu
converges to a simple scaling solution near the vertex, wh
the ridge length should become unimportant. It has b
shown@22,23# that the total bending and stretching energy
ridges in two-sheets scale the same way with manifold len
scales and obey a virial theorem: the ratio of the total be
ing to stretching energy is 5–1. The same virial ratio w
also demonstrated for (m21)-dimensional ridges in
m-sheets@34#. We therefore infer that to lowest order, th
bending and stretching energy densities must followidenti-
cal scaling in the simple scaling region near vertices. T
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virial relation,Eb553Es , should also be evident in the ra
tio of scaling prefactors for the two energies. Furthermo
the total elastic energy in a ridge diverges as the length of
ridge becomes infinite@23#, so the energy density along th
ridge should not fall faster thanF21. Thus we expect the
scaling behavior of ridges to follow

L b;F2q

Ls'1/5L b;F2qJ 0,q,1. ~14!

This dependence implies that strain energy has not c
densed onto the vertices alone if ridges are present. In g
eral, our assumption of near-isometry away from the def
set implies that strain will condense out of the bulk of t
m-sheet. Thus we expect that the strain must condense
the ridges and vertices—onto the full setK. This means that,
beginning at someFc,1 that marks the boundary of th
ridge scaling region, there will be a more rapid dropo
~faster thanF21) of strain energy with volume away from
the ridges.

We can calculate the anticipated scaling exponentq above
based on the anticipated scaling of the ridge widthw(r ) at a
distancer from a vertex, vizw(r )5w(X) f (r /X), whereX is
the length of the ridge. Previous work@33# shows that
w(X);h(X/h)2/3 for (m21)-dimensional ridges in
m-sheets. We anticipate thatw(r )!w(X) when r !X, and
that in this regimew(r ) is independent ofX. Then our scal-
ing assumption impliesw(r )'h(r /h)2/3. The transverse cur
vature C(r ) is as usual presumed to be of order 1/w(r ).
Lobkovsky @22# originally derived this scaling property
based on more detailed assumptions. The curvature en
should be significant in a region of widthw around the center
of the ridge. The local energy density therefore scales
C2;r 24/3, while the high-energy volume should grow a
F;r 31/C5r 5/3. Thus the above curvature scaling leads
F24/5 scaling for bothLs andLb around the vertex if it is the
end point of a ridge. This scaling was originally derived f
two-sheets embedded in three dimensions. Other work@33#
suggests that the same scaling should hold form-sheets in
(m11)-dimensional spaces. Form-sheets, ridges with spa
tial extentX in l long directions and width of the formw(x)
given above in the remainingm2 l directions will occupy a
total volumeXm(h/X)(m2 l )/3. Compared with the total vol-
ume of the manifold, which is of orderXm, the high-energy
volume fraction isFc;(h/X)(m2 l )/3!1. Thus there is en-
ergy condensation onto ridges. For general dimensions,
reason that any balance of bending and stretching ener
should lead to a virial relation, and a virial relation in tu
implies parallel scaling of the two energy densities. So, E
~14! should hold for all higher-dimensional generalizatio
of ridges.

V. NUMERICAL METHODS

For the present study we have generalized the nume
approach of Seung and Nelson@2#, modeling anm-sheet as
anm-dimensional rectangular lattice and adding terms to
elastic energy to produce bending stiffness. Properly spe
ing, we simulate phantomm-sheets, which can pass throug
3-10
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SINGULARITIES, STRUCTURES, AND SCALING IN . . . PHYSICAL REVIEW E65 016603
themselves. In the latter part of this section, we discuss
parameter range in which the phantomm-sheet behaves like
a physicalm-sheet, as well as the special implications of t
phantom approximation on the structure of vertex singul
ties.

Our manifold is a hypercubic array of nodes labeled
I[$ i 1 , . . . ,i m%. Each node has ad-dimensional position
vector rW(I). The relaxed lattice has a nearest-neighbor d
tancea. The lattice displacement from a site atI to a nearby
one can be expressed by a vector ofm integers,D. It is
convenient to define the lattice displacementsuW (I,D), de-
fined as the displacement between the node at siteI and the
one shifted byD,

uW ~ I,D![2rW~ I!1rW~ I1D!. ~15!

The stretching energyU($RW %) for a three-sheet (m53) is
now defined as

U[G(
I

(
D5NN

~ uu~ I,D!u2a!2

1cs(
I

(
D5NNN

~ uu~ I,D!u2A2a!2. ~16!

Here NN denotes the six nearest-neighbor sitesD
5(61,0,0), (0,61,0), and (0,0,61). The NNN sites are the
12 second neighbor sites of the form (61,61,0), etc. The
weight coefficientcs assures thatU is isotropic, i.e., indepen
dent of the direction of strain relative to the lattice. We fou
by direct calculation of the elastic energy for uniform stra
in the (1,0,0), (1,1,0) and (1,1,1) directions, minimiz
with respect to lateral expansion, thatU@g# was equal for the
three directions of strain whencs51. The corresponding
Poisson ratio is 1/4. By expanding Eq.~16! for small devia-
tions of the three-sheet from zero deformation and equa
terms with those of Eq.~1!, we infer that for our latticem
54a2G andl5m.

We use a discrete form of Eq.~2! to determine the curva
tures in our simulatedm-sheet. For each origin siteI we
evaluate the diagonal elementskW i i from the nearest-neighbo
separations

kW i i '
1

a2
$@rW~ I1D i !2rW~ I!#2@rW~ I!2rW~ I2D i !#%. ~17!

The off-diagonal elementskW i j , iÞ j are computed in a simi
lar fashion from the next nearest-neighbor positions:

kW i j '
1

4a2
@$rW~ I1D i1D j !2rW~ I1D i2D j !%2$rW~ I2D i1D j !

2rW~ I2D i2D j !%#. ~18!

Once the curvature matrixkW is known for each site, we
may compute the curvature energyEb from Eq. ~3!. To save
computational time we do not project the curvature vect
onto the normal space of the manifold atI. This amounts to
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including tangential components in the curvature tensor
fined in Eq.~2!. It is the usual practice in linear elasticity t
neglect these terms because of their smallness@36#, so leav-
ing them in for computational efficiency does not introdu
any significant change to the energy density profile.

The sizes and elastic thicknesses of the lattices used in
simulations were arrived at through a trial-and-error bala
ing of computational resources and data quality. We m
mized elastic energy by using an inverse gradient rout
which theoretically converges in;N2 steps for a harmonic
potential withN degrees of freedom@37#. However, experi-
ence shows that the convergence becomes much less effi
when we make the elastic sheets very thin, since in this li
the total energy functional is highly nonlinear and has la
prefactors for the highest-order terms. This effect in elas
simulations was described in Ref.@43#, but their ‘‘recondi-
tioning’’ approach to regaining fast convergence requires
much computational overhead to be of use on large th
dimensional lattices. The computational cost of larger latti
must be balanced against the range of validity of the disc
lattice approximation. The lattice can only accurately acco
modate embeddings where the radius of curvature, 1/C, is
locally much greater than the spacing between lattice poi
We have no hope of maintaining accuracy at a vertex, wh
is a near singularity, but we try to stay within an operati
range where the sharpest features away from vertices h
radii of curvature at least a few times the interlattice po
spacing. This indirectly constrains the thickness of the ela
manifold we simulate, since features become sharper as
manifold is made thinner.

Our standard simulational procedure was to begin wit
lattice about 30 units on a side, since this was the sma
lattice where fine features were clearly visible. After the el
tic energy of the manifold was minimized on this lattice, w
interpolated the result onto an 80-unit lattice and minimiz
again. Then we decreased the elastic thickness of the m
fold on the larger lattice over a process of several minimi
tions. When the elastic thickness of the manifold becom
very small, the material becomes prone to falling into bro
local minima with fine-scale crumpling that confuses the e
ergy data. Slowly decreasing the thickness is a method
avoid this fine-scale crumpling. In most of the following se
tions we present the result of simulations on 80-unit lattic
with an elastic thickness of'0.02 lattice units. The entire
process of generating each minimized lattice took up to s
eral weeks on a 233 MHz, Pentium-II based linux compu
using a gcc compiler.

We note that our lattice simulates a phantomm-sheet,
which can pass through itself without penalty. Since the
ergetic properties we study follow from local laws, and w
stay in a thickness regime where curvature is nonsing
almost everywhere, the fact that our sheets are not s
avoiding does not affect the conclusions we draw from o
data. The effect of the phantomm-sheet behavior on the di
mensionality of vertex structures, where curvature does
come singular, is discussed in Sec. X. In particular, as
thickness goes to zero, the minimum energy configurati
need not converge to objects that have the local structur
a manifold. For example, in the vicinity of a vertex in
3-11
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DIDONNA, WITTEN, VENKATARAMANI, AND KRAMER PHYSICAL REVIEW E 65 016603
phantom sheet, ash→0, the configuration might converge t
a branched manifold~e.g., a cone that winds twice aroun
some axis!.

For geometries that generated several disclinations
single manifold, we took special care with initial condition
to insure that the system moved towards a symmetric fi
state. Relaxed states that contained a collection of iden
vertices gave much cleaner scaling and always had a lo
total energy than those that contained an ensemble of v
ces with different local structure. Thus, when we started
sheet in a state with several folds, we separated the opp
sides of the folds slightly in globally symmetric ways
determine how they would relax.

VI. SPATIALLY CONFINED SHEETS

In this and the next three sections we report the result
our simulations. In this section we explore the distortio
resulting from spatially confining our three-sheet in a co
tracting volume. Spatial confinement was simulated with
(R/b)10 potential, which acts essentially like a hard wall a

FIG. 4. Equipotential surface of the spatially confining poten
for a square two-sheet embedded in three dimensions.
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radiusb. We tailored the potential to our cube-shaped thr
sheet by making the equipotential lines nearly cubical
three spatial dimensions and spherically symmetric in all
maining dimensions. This reduced edge effects at the cor
of our cubes. The exact form of the potential was

E}(
i 51

3 F S xi

b D 2

1(
j 54

d S xj

b D 2G5

. ~19!

An equipotential surface of this potential for a two-sheet
d53 is shown in Fig. 4.

We began our simulations with the hard wall potential ju
outside the boundaries of the cube, then progressively mo
the walls inward on all sides until the geometrically confi
ing volume had only half the spatial extent of the resti
cube in any direction. The value ofb was decreased in te
equal steps, with the lattice allowed to relax to an elas
energy minimum after each step. This procedure simulat
gentle confinement process, which allows applied stres
propagate through the entire manifold volume instead of
ing caught in a strong ridge network at the outside edg
Gentle confinement is essential to good convergence of
inverse gradient routines used to minimize the elastic ene

Since the spatial confinement technique requires mult
inverse gradient minimizations for each simulation, it is n
computationally practical to run on large grids. Also, the d
obtained from this method do not lend itself as well to n
merical analysis, since the energy gradient from the tails
the hard wall potential mix with the elastic energy densiti
Still, simulations performed on smaller grids~20 lattice units
extent! show some interesting qualitative differences b
tween confinement ind54 vs d55. As Fig. 5 shows, the
regions of highest energy density are well organized li
networks ford54 but are much more scattered and disorg
nized for d55. Our arguments for the minimal dimension
ality of D presented in Sec. III A predict a minima
dimension of 1 and 0 respectively for three-sheets embed
in four and five dimensions. If we assume that the hig

l

d in four
t
nt
FIG. 5. Energy condensation map for spatially confined cubes. The cubes wereX520 lattice sites wide and had elastic thicknessh
50.075X. Image~a! shows a surface of constant bending energy density in the material coordinate system for a cube embedde
dimensions. The surface encloses the'10% volume fraction with the highest energy concentration. Image~b! shows a surface of constan
bending energy density for a cube embedded in five dimensions. This surface encloses the'7% volume fraction. The wireframes represe
the edges of the cubes’ material coordinates.
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SINGULARITIES, STRUCTURES, AND SCALING IN . . . PHYSICAL REVIEW E65 016603
FIG. 6. Method for creating disclinations. In~a!, one edge of two-sheet is folded and attached as shown. Points on the edge are ide
but the curvature is not continued across the seam. Image~b! shows an equilibrium configuration of a two-sheet constructed as in~a! after
elastic energy minimization~as in Fig 3!. Illustration ~c! shows how the same technique is used to make a line disclination in a c
three-sheet.
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energy regions seen in Fig. 5 surround parts ofD, then the
qualitative data supports these values for dimD.

VII. DISCLINATION PAIRS

To gain a better understanding of elastic energy cond
sation inm-sheets, we analyze several simpler forms of d
tortion. We first study pairs of disclinations. One way
create a disclination in a square two-sheet is to join t
adjacent corners and the edge connecting them, as show
01660
n-
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o
in

Fig. 6~a!. The disclination relaxes into a conical shape li
that shown in Fig. 6~b!. Placing two or more conical discli
nations in a two-sheet ind53 causes formation of ridge
that are apparently equivalent to those connecting vertex
gularities in a confined sheet. A corresponding technique
creating folds in a three-sheet is to add linelike wedge d
clinations into the manifold. We simulate line disclinations
three-cubes numerically by folding faces of an elastic cu
down the center and connecting the two halves as show
Fig. 6~c!.
d

heet
d
In
sses.
nit,
FIG. 7. Equilibrium embedding coordinates for elastic two-sheets with two 90° bends. The sheets wereX5200 lattice sites wide and ha
elastic thicknessh5231024X. The bends were imposed by attaching opposite edges to a rigid right-angle frame. Image~a! shows the three
embedding coordinates for a two-sheet in three-dimensional space. Image~b! shows the same three embedding coordinates for a two-s
in four-dimensional space. Image~c! shows the fourth embedding coordinate@not shown in~b!# for the two-sheet in four-dimensions, plotte
against the sheet’s material coordinates. In~c!, the value of the embedding coordinate has been multiplied by 20 to enhance contrast.~d!
the embedding coordinate shown in~c! is plotted against material coordinate down the folding line for three different material thickne
The ~1! symbols correspond to an elastic thickness of 1 lattice unit, the (3) symbols correspond to an elastic thickness of 0.1 lattice u
and the (h) symbols correspond to an elastic thickness of 0.01 lattice unit.
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DIDONNA, WITTEN, VENKATARAMANI, AND KRAMER PHYSICAL REVIEW E 65 016603
It can be shown by construction that the three-cube
embedding spaced.3 can accommodate one line disclin
tion without stretching. One can construct such an emb
ding by bending each plane perpendicular to the line dis
nation into an identical cone. However, pure bend
configurations for a three-cube with two such lin
disclinations will in general require folds. It is energetica
favorable for the cube to stretch to avoid singular curvatu
so we may expect the sheet to form ridges with the sa
degree of elastic energy condensation as in a physically
fined three-sheet.

We begin our study of disclinations in general dimensio
by simulating a two-sheet with two sharp bends embedde
either three or four-dimensional space. From previous w
@23# the two-sheet in three dimensions should form a sim
ridge—its expected behavior in four dimensions is n
known. Next we turn our attention to three-sheets, beginn
with a simulation of a half-cube with a single line disclin
tion embedded in either four or five dimensions. This sim
lation will verify the predicted scaling of a simple con
Then, to induce elastic energy condensation we const
three-cubes with two line disclinations at opposite cube fa
and embed them in four or five dimensions. Since there is
guarantee that our procedure will find the global ene
minimum, we start the cubes in many different initial cond
tions. We investigate the behaviors when the line discli
tions are either parallel or perpendicular to one another in
material coordinates.

A. Two-sheet: Two sharp bends

The behavior of two-sheets with two disclinations
three-dimensional space has been studied extensively@22#,
and our simulations of this geometry reproduced fami
results. However, we found for a variety of material thic
nesses and disclination geometries that the behavior of
same two-sheets embedded in four dimensions was rem
ably different. The data presented here is for a sheet ge
etry that is closely related to imposed disclinations and d
played the sheet’s behavior particularly well. Instead
creating a disclination like that in Fig. 6~a!, we fold opposite
edges of the sheet and attach them to rigid frames with s
bends at their centers. Each frame keeps the edge str
with a 90° angle at its center point. The frames are free
translate or rotate in the embedding space. This bound
condition is close to the conditions used to create ‘‘minima
ridges in Ref.@22#. In that work Lobkovsky argued that th
configuration of the sheet around a bending point on the e
will be much like that around a vertex. We found that t
quantitative behavior of this boundary condition was cons
tent with that of imposed disclinations, but it allowed f
more flexibility. The equilibrium embeddings of sheets w
this geometry are shown in Fig. 7. Figure 8 presents plot
energy density versus area for three and four dimensio
embeddings, and Fig. 9 plots local bending and stretch
energy densities in the sheets’ coordinate systems.

It is immediately evident from Figs. 9 that the stretchi
energy density in the region between the two sharp bend
greatly diminished in the four-dimensional embedding co
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pared to the three-dimensional embedding. For the latter
bedding, the line of high stretching energy density in F
9~b! marks the presence of the stretching ridge. Howev
there is no such stretching line in the four-dimensional e
bedding energy map plotted in Fig. 9~d!, even though Fig.
7~b! shows that there is still a folding line between the sha
bends in four dimensions. The energy plot in Fig. 8~a!, for
three-dimensional embedding, shows the parallel scaling
bending and stretching energies that is indicative of a rid
but the energy plot in Fig. 8~b!, for four dimensions, is more
suggestive of conelike scaling, since the stretching ene
falls twice as fast as bending energy away from the sh
bends.

Examining the embedding coordinates of the manifold
four dimensions, we found that the sheet mainly occup

FIG. 8. Energy density plots for elastic two-sheets with tw
sharp bends. The sheets wereX5200 lattice sites wide and ha
elastic thicknessh5231024X. In each graph the1 symbols de-
note bending energy while the3 symbols denote stretching energ
Energies are expressed in arbitrary units. Horizontal axes are
fractionF. Graph~a! shows local stretching energy densityLs and
bending energy densityLb vs area fractionF at or above this en-
ergy density from an embedding in three dimensions. Graph~b!
shows the same quantities from an embedding in four dimensi
In both graphs the straight lines are power law fits to the bend
and stretching energy densities. In all graphs the energy fits ar
the region between 0.5% and 2.0% volume fraction. In~a!, the
solid line is a fit to the bending energy density, with scaling exp
nent 20.61, and the dashed line is a fit to the stretching ene
density, with scaling exponent20.71. In~b!, the solid line is a fit to
the bending energy density, with scaling exponent20.66, and the
dashed line is a fit to the stretching energy density, with sca
exponent21.10.
3-14
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SINGULARITIES, STRUCTURES, AND SCALING IN . . . PHYSICAL REVIEW E65 016603
FIG. 9. Elastic energy density profiles in two-sheet with two sharp bends pictured in Fig. 7. The sheets wereX5200 lattice sites wide.
The elastic thickness of each wash5231024X. In each plot the height of the surface is proportional to energy density in relative units
the x andy coordinates are the material coordinates in the manifold. The same energy units are used in all four plots. Plots~a! and ~b! are
for a three-dimensional embedding, plots~c! and~d! are from a sheet embedded in four dimensions. Plots~a! and~c! are the bending energie
in the two-sheets, plots~b! and ~d! are the stretching energies.
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only three of the four available spatial dimensions. Figu
7~c! plots the value of the embedding coordinate with t
lowest moment of inertia~the moment for the entire man
fold in this direction is four orders less than that in oth
directions, in a frame where the inertia tensor is diagon!.
We believe this slight bubbling into the extra dimension a
as a sink for compressive stress along the line connecting
sharp bends. Since this deviation is so small, one of the
normals to the manifold lies mostly in this direction over t
entire surface. The curvature shown in Fig. 7~c! is small
compared to the major component of curvature across
folding line, and is nearly orthogonal to it, so it has litt
effect on the total bending energy. Yet, in the thin sheets
simulate, the resulting changes in the strain field affect
stretching energy enormously.

The bubbling discussed above is evidence of an inte
tion between the sharp bends, since such a configuratio
not seen for isolated disclinations or vertices and must
energetically less favorable than perfectly straight cone g
erators. If the sharp bends interact in a way that depend
the distance between them relative to the elastic thickn
then there might be some analog of a higher-dimensio
ridge between them, with much weaker stretching ene
We did not see ridgelike parallel scaling in Fig. 8~b!, but it is
possible that the strain in this kind of ridge is so weak, a
the virial ratio between bending and stretching is correspo
ingly so high, that the systems we simulated were domina
by a conelike configuration near the sharp bends and no
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the ridge between them. If this is the case, our stretch
energy graph shows only the initial energy falloff away fro
the sharp bends and never reaches the energy density va
which parallel scaling would commence. We can use
graph to put a lower limit on any possible virial relation b
noting that conelike scaling continues to at least 2% volu
fraction, at which point the ratio between bending and stre
energy densities is'70. Thus, if the bending and stretchin
energies do scale with elastic thickness, they should sa
Eb.70Es .

Following the derivation presented in the Appendix, w
can use the virial relation to put limits on the scaling exp
nents for the typical curvatures and strains on the ridge.
the above virial ratio, in theh→0 limit the typical midridge
curvature would increase more slowly than (X/h)1/35 and the
typical ridge strain would fall faster than (h/X)34/35, whereh
is the elastic thickness andX is the length of the folding line.
To test our scaling hypothesis, we probed the deviation i
the normal direction shown in Fig. 7~c!. We estimate that the
inverse square of the height of these bumps is proportiona
the residual Gaussian curvature and therefore the strain a
the ridge. In simulations of the same system at several
ferent thicknesses, spanning two orders of magnitude,
could not discern a consistent change in the peak-to-p
height along this second normal@see Fig. 7~d!#. Since our
ridge scaling arguments tell us we should see clear scalin
this peak-to-peak height with thickness, we conclude t
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DIDONNA, WITTEN, VENKATARAMANI, AND KRAMER PHYSICAL REVIEW E 65 016603
either we are not close enough to the thin limit for any p
tential scaling behavior to be evident, or the equilibrium co
figuration is really a higher-dimensional variation of simp
cone scaling, which is truly independent of elastic thickn
and fold length. These tests were run at (h/X) ratios from
1023 to 1025, the entire range of thicknesses our simulatio
can handle and a region where two-sheets in three dim
sions show very clear thickness scaling. It is clearly beyo
our computational capabilities to resolve this potential sc
ing behavior.

B. Three-sheet: Single disclination

To verify our numerical predictions for the cone, w
simulate an elastic half-cube with a single line disclinati

FIG. 10. Energy density plots for elastic half-cubes with sin
line disclinations. The rectangular solids wereX540 lattice sites
across perpendicular to the face with the disclination and 80 s
wide in the other directions. They had elastic thicknessh52.5
31024X. In each graph the1 symbols denote bending energ
while the 3 symbols denote stretching energy. Energies are
pressed in arbitrary units. Horizontal axes are volume fractionF.
Graph ~a! shows local stretching energy densityLs and bending
energy densityLb vs volume fractionF at or above this energy
density from an embedding in four dimensions. Graph~b! shows
the same quantities from an embedding in five dimensions. In b
graphs the straight lines are power law fits to the bending
stretching energy densities in the region between 2.0% and 1
volume fraction. In~a!, the solid line is a fit to the bending energ
density, with scaling exponent20.95, and the dashed line is a fit t
the stretching energy density, with scaling exponent21.87. In ~b!,
the solid line is a fit to the bending energy density, with scal
exponent20.95, and the dashed line is a fit to the stretching ene
density, with scaling exponent21.87.
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on one face. We use a 40380380 unit lattice. The minimum
energy embedding is a virtually identical cone in all t
planes perpendicular to the line disclination. The radius
the cone ranges from 40 toA2340 lattice units. Figure 10
show the scaling of bending and stretching energy dens
away from the disclination for both four and five
dimensional embeddings. In both cases the scaling expon
are very close to the theoretical values of21 for bending
and22 for stretching for a cone with two-dimensional sym
metry. We are quite satisfied that the elastic lattice can ac
rately represent the cone around a single disclination.

C. Three-sheet: Parallel disclinations

Apart from boundary conditions, the cube with paral
disclinations has a natural symmetry along the direction
the disclinations. We found that for all initial condition
tested, energy minimization resulted in a final configurat
that showed this same symmetry~see Fig. 11!. The manifold
has no strain or curvature in the direction parallel to t
disclinations, and very similar configurations for all plan
perpendicular to this direction. In principle, for embedding
d dimensions, the configuration in each of the perpendicu
planes is identical to that which we would expect for
elastic two-sheet with the same thickness to length ratio
bedded ind21 dimensions. In practice, we find that th
extra material dimension adds an additional stiffness aga
fine scale crumpling that often confuses similar simulatio
in two-sheets.

For four-dimensional embedding the equilibrium config
ration is a ‘‘stack of ridges,’’ which shows the same ener
scaling as a ridge in three dimensions. Figure 12~a! is a plot
of energy density vs volume for a three-cube with para
disclinations in four dimensions. Within the high energy r
gion encompassing'2 –8 % volume fraction, the ratio o
bending energy density to stretching energy density a
given volume fraction is'6.2. This number is consisten
with the theoretical energy ratio of 5. In this volume ran
the plots also confirm the lack of condensationalong the
ridge of both bending and stretching energies as well as
identical scaling of these energies. For the entire region u
'30% volume fraction the bending and stretching ene
have roughly the same dependence on volume, though
do not fit a clean scaling exponent for any extended reg
The sharp dropoff of the dominant energy above 30% v
ume fraction shows the significant condensation of ene
around the ridge structure.

In contrast to the ridge-scaling in four dimensions, t
energy scaling behavior of the sheet embedded in five
mensions appears conelike. The stretching scaling expo
of 21.59 indicates that the stretching energy is condense
the vertices, while the bending exponent of20.93 is consis-
tent with 21, the predicted bending scaling of isolated lin
disclinations. The scaling data, as well as the lack of a str
ridge region in Fig. 11~b!, indicate that the scaling aroun
each disclination is not strongly influenced by interacti
between the two disclinations. The scaling resembles
around the isolated disclination reported in Sec. VII B.

es

-

th
d
%

y

3-16



ss
d in four
een the

the cubes’
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FIG. 11. Energy condensation map for cubes with parallel disclinations. The cubes wereX580 lattice sites wide and had elastic thickne
h5231024X. Image~a! shows a surface of constant bending energy density in the material coordinate system for a cube embedde
dimensions. The surface encloses'10.0% volume fraction and shows energy condensation along the ridge which spans the gap betw
disclinations. Image~b! shows the same surface for a cube embedded in five dimensions. The wireframes represents the edges of
material coordinates. Heavy lines mark the locations of disclinations.
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D. Three-sheet: Perpendicular disclinations

A typical spatial energy distribution after energy minim
zation for a cube with perpendicular disclinations embed
in d54 is shown in Fig. 13~a!. A common feature of all the
cubes embedded in four dimensions is the spontaneous
pearance of additional linelike vertex structures. Spann
the volume between vertices and disclinations are tw
dimensional ridges. This result is consistent with thed54
geometrical confinement simulations detailed in Ref.@34#.
Figure 14~a! shows the decay of local energy density w
volume away from ridges and vertices for an elastic cu
with nonparallel disclinations in four dimensions. Th
highest-energy regions correspond to the imposed disc
tions and spontaneous vertex network. Lower energy reg
correspond to ridges. The region between 1% and'5%
volume fraction shows smooth scaling of bending a
stretching energy densities with volume in a region dom
nated by the high-energy part of ridge structures~where they
join at vertices!. In this region the bending energy densi
scales with exponent20.77 and the stretching with expone
20.91. The values of the scaling exponents in this region
reasonably close to each other and to the theoretical sca
of 24/5 derived in Sec. IV. The scaling is clearly distin
from that of a cone, where the stretching energy densit
expected to fall faster thanF21.

The behavior of the same cubes placed ind55 was quite
different @see Fig. 13~b!#. For this embedding there is n
spontaneous ridge-vertex network between the imposed
clinations. The difference in structure is reflected in the
ergy density plot, Fig. 14~b!. In the volume fraction that
typically encompasses high-energy structures apart from
tices and disclinations, the bending energy scales with
ume with an exponent of20.90 while the stretching energ
scales with an exponent of21.65. These numbers indica
the dominance of conical scaling near the vertices. They
similar to the scaling exponents for the cube with para
disclinations in five dimensions. Figure 15 shows that
embedding appears to be locally conical around a discl
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tion, without any evidence of folds. We surmise that t
sheet has relaxed to a configuration where the cones aro
each line vertex interpenetrate without interacting strong
This result demonstrates that in higher-dimensional cru
pling, multiple vertices can exist in a sheet without requiri
folds, for some geometries.

For this simulated geometry and several of the followin
we present data for thicker sheets in four dimensions tha
five. This is because the ridges found in four dimensio
become very sharp ash gets smaller, and we typically
present the thinnest data that do not show signs of fi
lattice effects@like those seen below in Fig 17~a!#. For five-
dimensional embeddings, decreasing the thickness typic
shifts all the stretching energy densities upward and ther
extends the volume of cone scaling visible before the stre
ing energy density fades to background levels. We thus ch
to present data from thinner sheets for five dimensions.
found that ridge scaling becomes more distinct as the s
becomes thinner, so the use of thinner sheets in five dim
sions only strengthens our claim that there is no evid
ridge structure in five dimensions.

VIII. TOROIDAL CONNECTIVITY

Toroidal connectivity was simulated numerically by d
fining the lattice displacement vector,D, such that opposite
faces of our cubic array had nearest-neighbor connecti
The resulting connectivity was everywhere isotropic, with
borders or disclinations. Simulations were run for three-t
embedded in four, five, and six spatial dimensions. Init
conditions were either random or chosen to be very symm
ric or close to possible energy minima. In all cases whend
54 or 5, minimization of the elastic energy resulted in e
ergy condensation and the formation of high-energy n
works. For six-dimensional embeddings the elastic ene
was many times smaller than in lower dimensions and w
uniformly distributed over the manifold. Figure 16 compar
the energy condensation networks for three-tori embedde
3-17
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either four or five dimensions. Although the network is mo
extensive ford54, in either dimension high-energy stru
tures have comparable energy densities. We simulated
geometry beginning from many different initial condition
and the resulting final configurations showed varying degr
of asymmetry between the vertices. The configuration p
sented in Fig. 16~a! showed the highest degree of symme
of all our four-dimensional torus simulations—its total ela
tic energy was;25% less than that of configurations th
broke symmetry, so we believe it is most likely the tr
ground state of the system. Our energetic analysis was
formed on this configuration.

FIG. 12. Energy density plots for an elastic cube with para
disclinations The cubes wereX580 lattice sites wide and had ela
tic thicknessh5231024X. In each graph the1 symbols denote
bending energy while the3 symbols denote stretching energy. E
ergies are expressed in arbitrary units. Horizontal axes are vol
fractionF. Graph~a! shows local stretching energy densityLs and
bending energy densityLb vs volume fractionF at or above this
energy density from an embedding in four dimensions. Graph~b!
shows the same quantities from an embedding in five dimensi
In both graphs the straight lines are power law fits to the bend
and stretching energy densities. In graph~a! the bending energy fit
is to the region between 3.0% and 8.0% volume fraction and
stretching energy fit is to the region between 2.0% and 5.0%
ume fraction. In graph~b! the fits are to the region between 1.0
and 4.0% volume fraction. In~a!, the solid line is a fit to the bend
ing energy density, with scaling exponent20.63, and the dashe
line is a fit to the stretching energy density, with scaling expon
20.48. In ~b!, the solid line is a fit to the bending energy densi
with scaling exponent20.93, and the dashed line is a fit to th
stretching energy density, with scaling exponent21.59.
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The analog of ridges in the three-torus ind54 are again
planes of high elastic energy. These ridge structures mee
vertex-lines of very high elastic energy. Figure 17~a! shows
the decay of local energy density with volume away fro
ridges and vertices for a three-torus in four dimensions.
fit a power law to the region that we identify as parts
ridges near the vertex structures. In this region the ene
densities scale with an exponent of20.87 for bending en-
ergy and20.88 for stretching. These values are consist
with the theoretical ridge scaling exponent of24/5 derived
in Sec. IV. Within the ridge scaling volume the ratio of ben
ing energy density to stretching energy density is 8.5, wit
a factor of 2 of the known value, 5, for two-sheets in thre
dimensional crumpling.

The energy structures of tori embedded ind55 were
qualitatively different from those embedded ind54 ~refer
again to Fig. 17!. For d55, the structures corresponding
vertices appear pointlike instead of linelike. The majority
the total energy density is concentrated around these po
like vertices. Between vertices we were able to see sma
linelike energy concentrations of elastic energy that co
correspond to ridge structures. However, these regions o
pied a miniscule volume in the manifold. The predomina
energy structures were more symmetric and were cent
around vertices.

Energy density vs volume is plotted in Fig 17~b! for an 80
lattice unit three-torus embedded ind55. Smooth energy
scaling begins at about 0.5% volume fraction and holds
up to '10% of the total volume. Within these high-energ
regions the bending energy density scales with volume w
an exponent of20.56, whereas stretching energy dens
dies off more quickly, with a scaling exponent of21.02.
This is consistent with our simulations of line disclinations
five dimensions, since the stretching energy falls off nea
twice as fast as the bending energy. The number of vert
present in the manifold would lead us to expect ridges, bu
we saw in Sec. VII C, ridges cannot be resolved by ene
scaling alone in five dimensions at elastic thicknesses ac
sible to our simulations. The scaling exponents above
closer to the expected exponents of22/3 and24/3 for coni-
cal scaling around a pointlike disclination than to any oth
kind of scaling behavior we know. The embedding is pro
ably close to this form of cone near the vertices.

IX. SINGLE FOLD „BOW CONFIGURATION …

In our final set of simulations we set our boundary a
initial conditions to create single, pointlike vertices. Our a
was to verify scaling predictions for vertex deformations
four and five dimensions and to show clearly the existence
pointlike vertex structures in five-dimensional embeddin
According to the relations presented in Sec. II, a vertex
expected to have high Gaussian curvature. In more spe
terms this means a vertex is a locus of strong curvature i
least two material directions along the same normal vec
Therefore, to force the existence of exactly one vertex in fi
dimensions~where every manifold point has two indepe
dent normals! we searched for a minimal set of bounda
conditions that necessitated that some points in the mani
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FIG. 13. Energy condensation map for cubes with perpendicular disclinations. The cubes wereX560 lattice sites across, 90 lattice uni
wide in the directions parallel to the disclinations, and had elastic thicknessesh5631024X ~a! andh5331024X ~b!. Image~a! shows a
surface of constant bending energy density in the material coordinate system for a cube embedded in four dimensions. Image~b! shows a
surface of constant bending energy density for a cube embedded in five dimensions. The energy density value encloses'3% volume
fraction in image~a! and shows the spontaneous vertex lines that arise between disclinations. In image~b! the equal energy density surfac
encloses'10% volume fraction and shows the growth of the high-energy region around the disclinations without additional vertices
between them. The wireframes represent the edges of the cubes’ material coordinates. Heavy lines mark the locations of disclin
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have curvature in all three material directions. Our most s
cessful simulations, presented here for four and fi
dimensional embeddings of a three-cube, had only the ce
points of opposite faces attached. This geometry caused
tices to form while leaving the majority of the boundary fre

Figure 18 shows the pattern of energy condensation
three-cubes with attached opposite faces after energy m
mization. For four-dimensional embeddings the surfaces
constant energy density enclose linelike regions that trav
the cube as seen in Figs. 18~a! and ~b!. The high-energy
regions appear linelike all the way up to the highest value
the energy density. In contrast, the surfaces of constant
ergy density for five-dimensional embeddings form a se
of shells, as seen in Figs. 18~c! and~d!, whose typical diam-
eters increase with decreasing energy density value. The
ergy density at the surface in Fig. 18~c!, which encloses
0.1% volume fraction, is nearly an order of magnitu
greater than the energy density at the surface of Fig. 18~d!,
which encloses 1% volume fraction and just touches the
side edges of the cube. These data clearly support our a
tion that pointlike vertex structures are possible in fiv
dimensional embeddings. At the same time, they
consistent with conjectures@22# that the high-energy region
in four-dimensional embeddings are linelike. It may be no
that the five-dimensional embedding is asymmetric, wh
the four-dimensional embedding has a high degree of s
metry. We found that the elastic manifolds always sponta
ously broke symmetry in five dimensions, but the minimu
energy configuration we could find in four dimensions w
perfectly symmetrical.

Plots of energy density vs enclosed volume fraction
this geometry are presented in Fig. 19. For four-dimensio
embeddings the bending energy density does not scale w
simple exponent in the volume range between 1% and 1
volume fraction that we associate with the high-energy
gion of ridges. To get a representative value of the ene
dropoff we fit a power law to the region between 3% a
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10% volume fraction and find an exponent of21.02. The
stretching energy scales more cleanly in the region betw
2% and 9% volume fraction, with an exponent of20.75.
The stretching energy exponent is close to the expected v
of 24/5 and is smaller in magnitude than21, so we can
safely identify the scaling as ridgelike. When viewing th
equal energy surfaces at larger volume fractions~not shown
here! we saw a good deal of secondary structure in the rid
themselves, which could explain the many features in
energy density dependence.

For the five-dimensional embedding we fit a simple pow
law to the region of the graph that enclosed less than'2%
volume fraction, since above this enclosed volume fract
the surfaces shown in Figs. 18~c! and~d! intersect the bound-
ary of the cube@49#. In this region the bending energy den
sity scales with an exponent of20.65 while the stretching
energy density scales with an exponent of21.26. These
numbers are consistent with the theoretical five-dimensio
cone scaling exponent of22/3 and24/3 derived in Sec. IV.

X. DISCUSSION

In the numerical simulations reported in this paper,
have investigated the behavior of two and three-dimensio
manifolds embedded in dimensions three and greater, sub
to a variety of boundary conditions that cause crumplin
The results of our simulations, which are summarized
Table I, show a consistent dependence of the crumpling
sponse ond2m, the difference between the dimensionali
of the embedding space and that of the sheet. The beha
summarized in Table I can be described by the followi
general principles.

~1! For all the boundary conditions we consider, the
mensionality of spontaneous verticesD is 2d2m21, sug-
gesting that the vertex dimensionality is always given by
lower bound from the arguments in Sec. III A that yie
dim(D)>2m2d21.
3-19
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DIDONNA, WITTEN, VENKATARAMANI, AND KRAMER PHYSICAL REVIEW E 65 016603
~2! If d5m11, the details of the curvature defect setK
determine the nature of the energy condensation. ForD5K
~no folding lines! we have the cone scaling discussed in S
IV, and for K2DÞB ~folding lines present! we find ridge
scaling.

~3! If d>m12 we always find cone scaling ifKÞB.

We believe that these principles are true in general. C
sequently, they give explicit predictions for the behavior
elastic sheets in higher dimensions.

FIG. 14. Energy density plots for the elastic cubes with nonp
allel disclinations in Fig 13. The cubes wereX560 lattice sites
across, 90 lattice units wide in the directions parallel to the dis
nations, and had elastic thicknessesh5631024X ~a! and h53
31024X ~b!. In each graph the1 symbols denote bending energ
while the 3 symbols denote stretching energy. Energies are
pressed in arbitrary units. Horizontal axes are volume fractionF.
Graph ~a! shows local stretching energy densityLs and bending
energy densityLb versus volume fractionF at or above this energy
density from an embedding in four dimensions. Graph~b! shows
the same quantities from an embedding in five dimensions. In~a!,
the solid line is a power law fit to the bending energy density in
region between 1.0% and 5.0% volume fraction, with scaling
ponent20.77, and the dashed line is a power law fit to the stret
ing energy density in the region between 3.0% and 10% volu
fraction, with scaling exponent20.91. In ~b!, the solid line is a
power law fit to the bending energy density in the region betw
1.0% and 10.0% volume fraction, with scaling exponent20.90,
and the dashed line is a power law fit to the stretching ene
density in the region between 1.0% and 5% volume fraction, w
scaling exponent21.65.
01660
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A. Effect of embedding dimension on defect dimension

Our data consistently supports the arguments presente
Sec. III A that for an m-dimensional manifold in
d-dimensional space withd,2m, the dimensionality of the
setD of vertex singularities will be greater than or equal
2m2d21. In fact, we found that all spontaneous vert
structures had dimensionality 2m2d21 identically. For
five-dimensional embeddings of three-sheets in which we
not explicitly make linelike disclinations, the manifolds we
able to relax to configurations whereinD was small and
pointlike. In contrast, when the embedding space was f
dimensional for the same manifolds and boundary con
tions, D was always linelike, terminating only at materi
boundaries. It is worth noting that in all cases whereD was
one dimensional, it was also piecewise flat—it is easy
argue that in order to minimize its spatial extent,D will in
general be flat. Though our dimensionality arguments ap
to only asymptotically thin sheets, the predictions app
well obeyed even for sheets as thick as 1/30 of their wid
The dimensional behavior is thus much more robust than
ridge scaling behavior.

Because of the phantom nature of our simulated sheet
found that favorable energy configurations often had lo
geometries at vertices in which the sheet passed thro
itself—the most common example was branched manifo
at vertices. The arguments for scaling and the minimum
mensionality ofD are not affected by whether or not th
sheets are phantom. However, the set of boundary condit
that produce nonphantom sheets with minimal vertex dim
sionality may be more limited than for phantomm-sheets.

B. Effect of embedding dimension on scaling

In Sec. IV we made predictions for the energetic scal
outside of vertex structures for a sheet whose thickness
much smaller than its width. However, we did not analy
cally address how thin the sheet must be before it displ
‘‘thin limit’’ behavior. Our observations of the typica
progress of a numerical simulation lend some insight into
approach to this asymptotic limit. In the process of relaxi
our sheets, we often vary the thicknessh, which shows us
how the energy distribution depends onh. We were not able
to vary h enough to directly observe any scaling behav
with h. Even our smallesth’s show little enough of the de
sired asymptotic behavior, and increasingh only blurs this
behavior beyond recognition. However, the qualitative b
havior with h is consistent with our conclusions. The r
ported results are for the smallesth values we could reliably
attain. Whenh is made larger, the main effect is to reduce t
dynamic range in our energy density plots. It makes the
ergy spread more uniformly over the sheet. Where ridge s
ing is observed, increasingh reduces the proportion o
stretching energy, as we have previously observed in t
sheets@22#. Finally, increasingh reduces the observed effe
of embedding dimension. The clear differences between
stretching and bending energy profiles in five dimensio
become less distinct ash is increased. This is as expecte
Embedding dimensions should have less effect if a shee
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FIG. 15. Two views of a three-dimensional projection of the embedding coordinates for a two-slice from the material coordina
cube with nonparallel disclinations embedded in five dimensions. The material coordinate slice contains one disclination along
marked with the heavy line in~a!. It is perpendicular to the other disclination, which is marked with a heavy line in~b!. The views were
chosen to show the conelike geometry about the disclination that the plane intersects at a point.
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thicker. These behaviors add to our confidence that the s
ing behavior we report becomes more, not less, distinc
we reduceh.

Our derivation of cone scaling was based on very sim
and well-founded assumptions, so it was not a surprise
cone scaling was so clearly visible in geometries where
expected to find it. In all simulations where there was o
one disclination structure in a three-dimensional manifo
the observed scaling was consistent with our predicti
based on cones. A single line disclination in either four
five dimensions produced a cone structure with scaling
that of a simple cone in a two-sheet. In the simulations p
sented in Sec. IX, embeddings in five dimensions produce
pointlike vertex and energy scaling close to our predictio
for double-cone scaling~where there is curvature on th
same order in both material directions perpendicular to
cone generators!. The success of these predictions assure
that the cone structure is well understood and that, for
case of line disclinations, the description of a relaxed c
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figuration in terms of a stack of two-sheet embeddings
be accurate.

Our simulations verified the formation of ridges in two
sheets in three dimensions and in three-sheets in four dim
sions, as witnessed in other studies@3,34#. As expected, pla-
nar ridge structures spanning the gaps between linear ve
structures ind54 had the same energy-bearing properties
their three-dimensional equivalents. However, for two-she
in four dimensions and three-sheets in five dimensions
consistently found no ridge energy structures, even al
what appeared to be folds. In Fig. 7~c! it is apparent that the
elastic sheet deflects slightly into the fourth dimension
order to relieve the strain along the ridge center. The way
ridge decreases the strain along its midline shows the es
tial difference between embeddings ofm sheets inm11 di-
mensions and in all greater dimensions. In the geometric
Karman equations, Eq.~9!, the sources of strain aresumsof
curvatures along different normals. If there is more than o
normal direction, then there is the possibility of cancellati
erial
ymmetric
surfaces
rial
FIG. 16. Energy condensation maps for three-tori. The tori were made from cubes of widthX580 lattice sites and with elastic
thicknessesh5131023X ~a! and h52.531024X ~b!. Image ~a! shows a surface of constant bending energy density in the mat
coordinate system for a three-torus embedded in four dimensions. In this simulation the initial conditions were chosen to favor a s
relaxed state. Image~b! shows a surface of constant bending energy density for a three-torus embedded in five dimensions. The
encloses'2.5% volume fraction in~a! and '2.8% volume fraction in~b!. The wireframes represent the edges of the cubes’ mate
coordinates.
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between curvature terms for any given two-dimensional
perplane. On the four-dimensional fold the manifold bubb
into the extra dimension, creating positive Gaussian cur
ture that counters the negative Gaussian curvature of
saddle-shaped peak-to-peak ridge profile~see, for example
Fig. 3!. We do not assume that the cancellation of lowe
order terms is perfect, but we showed in Sec. VII A that
stretching energy is diminished so greatly relative to
bending energy that ridgelike scaling is completely mas

FIG. 17. Energy density plots for the three-tori in Fig. 16. T
tori were made from cubes of widthX580 lattice sites and with
elastic thicknessesh5131023X ~a! and h52.531024X ~b!. In
each graph the1 symbols denote bending energy while the3
symbols denote stretching energy. Energies are expressed in
trary units. Horizontal axes are volume fractionF. Graph~a! shows
local stretching energy densityLs and bending energy densityLb vs
volume fractionF at or above this energy density from an embe
ding in four dimensions. The several plateaus in the high-ene
part of the plot are an artifact of the discrete lattice. They reflect
nearly identical geometry of the points on and adjacent to the
tices, which make up a measureable fraction of the manifold v
ume. Graph~b! shows the same quantities as in~a! for an embed-
ding in five dimensions. In~a!, the solid line is a power law fit to
the bending energy density in the region between 2.0% and 1
volume fraction, with scaling exponent20.87, and the dashed lin
is a power law fit to the stretching energy density in the reg
between 2.0% and 6.0% volume fraction, with scaling expon
20.88. In~b!, the solid line is a power law fit to the bending ener
density in the region between 0.5% and 10.0% volume fract
with scaling exponent20.56, and the dashed line is a power law
to the stretching energy density in the region between 0.5%
10% volume fraction, with scaling exponent21.02.
01660
-
s
a-
he

t-
e
e
d

by conical scaling near vertices~It is notable that, based on
the scaling arguments derived in the Appendix, in the limit
very large virial ratios the dominant curvature terms beco
increasingly insensitive to the elastic thickness—much l
they are in cones!. We hope to return to this subject in futur
research, with the aim to find analytic expressions for
embedding of a two-sheet with two disclinations in four sp
tial dimensions and derive the thin limit scaling directly.

C. New questions raised by this work

We believe that the detailed structure of the novel poi
like vertices in three-sheets deserves further study. For
ample, in Sec. IX we touched on the fact that these po
vertices are loci of folding in all three material direction
Since the three material directions share only two norm
and are constrained by the boundary conditions that the s
be isometric outside the vertex point, it is likely that th
angles each direction folds by can only takediscretesets of
values—not unlike the discretization of disclination angles
a lattice, but driven purely by spatial geometry for an oth
wise continuous medium. This discetization would proba
be more pronounced in sheets that are not phantom, s
branched manifolds at vertices add more degrees of freed

Much could also be learned by viewing these new cru
pling phenomena as a mathematical boundary-layer prob
since they display several new and intriguing features in
light. Our problem belongs to the class of variational pro
lems given by a singularly perturbed energy functionalE h

with small parameterh. One approach to analyzing suc
variational problems is by identifying the boundary laye
and then determining the appropriate solutions throu
matched asymptotics. Example of this ‘‘local’’ approach,
applied to elastic two-sheets are the analysis of ridges in R
@22# and of the vertices in Ref.@10#.

A contrasting ‘‘global’’ approach to these problems
through the notion ofG –convergence@44,45#. This approach
calls for the identification of an appropriate asymptotic e
ergy E* that gives the energy of a configuration in theh
→0 limit. This asymptotic energy functional is called theG
limit of the functionalE h ash→0. If the G limit exists, the
configuration of the minimizers for a small but nonzeroh is
then deduced by finding the minimizers forE* and observing
that the minimizer for nonzeroh is close to the minimizer for
E* . Note that this approach is similar in philosophy to o
arguments in Sec. III where we deduced the structure of
vertex regions forh.0, by considering isometric immer
sions that are relevant forh50.

Since these singularly perturbed variational proble
show energy condensation, in the limith→0 all the energy
concentrates on to a defect set, which we denote byB. Con-
sequently, the appropriate asymptotic energy should also
defined for singular configurations, and it should depend
the defect setB, and the configurationu outsideB. Thus, the
asymptotic energy is given by a functionalE* 5E* @h,u,B#.
Examples of this type of analysis are the analysis of ph
separation in Refs.@18,19# and the asymptotic folding energ
in the context of the blistering of thin films@25,26,29#. In
both these cases, the asymptotic energy scales with the s
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FIG. 18. Energy condensation maps for three-cubes with center points of opposite faces attached. The cubes wereX580 lattice sites wide
and had elastic thicknessh52.531024X. Images~a! and ~b! show surfaces of constant bending energy density in the material coord
system for a three-cube embedded in four dimensions. In this simulation the initial conditions were chosen to favor a symmetric
state—many stable configurations show pronounced symmetry breaking in one direction. Images~c! and ~d! show surfaces of constan
bending energy density for a three-cube embedded in five dimensions. The surfaces in~a! and~c! enclose 0.1% volume fraction while thos
in ~b! and ~d! enclose 1%. The wireframes represent the edges of the cubes’ material coordinates.
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parameterh as E* ;ha for a fixed a. Also, the G limit is
local, in that the asymptotic energy is given by integratin
local energy density over the defect set. This is in sh
contrast to the behavior of elastic manifolds. For elas
manifolds, the asymptotic energy depends on two kinds
defect sets, the strain defect setD and the curvature defec
setK. The exponenta that gives the scaling ofE* with h is
not fixed, but depends on whether or notD5K. Finally, in
the case of ridge scaling, we have the following two int
esting features.

~1! The width of the boundary layer around the ridge d
pends on both the small parameterh and the length of the
ridge X.

~2! The energy of the ridge scales ash5/3X1/3 and is not
linear in the size of the ridge. Therefore, the asymptotic
ergy of the ridge is not given by an integral of a local ener
density overK.

These features imply that theG limit E* , if it exists, is
nonlocal. It is, therefore, very interesting to carry out a r
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orous analysis of theG limit for the elastic energy functiona
in Eq. ~6!. This analysis will probably involve new ideas an
techniques.

Finally, current theories of matter and space-time sugg
additional relevance for our findings. These theories@46#
view the observed properties of matter and space as ari
from the embedding of underlying manifolds into highe
dimensional spaces. Such postulates of higher-dimensi
spaces giving rise to observed properties date back to K
za’s@47# demonstration that electromagnetism can be view
as a consequence of a fifth spatial dimension. Though
work has explored only the behavior ofelasticsheets embed
ded in higher dimensions, many of our results concerningD
and K are purely geometrical. Since the energetics of el
ticity are relatively simple our geometric results may gen
alize to related theories, such as particle field theories. In
most general terms, we have demonstrated a circumstan
which manifold embeddings can give rise to interesting
calized features with a dimesionality distinct from that of t
manifold and the space@48#.
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CONCLUSION

In this paper, we have found two important results
crumpled sheets. First, we have shown that if the spa
dimensiond is greater thanm11, the stretching elastic en
ergy condenses onto vertex structures, while for the spe
cased5m11 it condenses onto ridges as well. Second,
have provided evidence that whend,2m the strain defect
set in a crumpled sheet has dimension at least 2m2d21.
For higher-dimensional manifolds withm.3, one may
imagine further forms of energy condensation as the emb
ding dimension increases. Such manifolds could reveal
ther surprises, as the present study did. Like gauge fie
elastic manifolds have revealed distinctive ways in wh

FIG. 19. Energy density plot for the elastic cubes with cen
points of opposite faces attached pictured in Fig. 18. The cu
wereX580 lattice sites wide and had elastic thicknessh50.001X.
In each graph the1 symbols denote bending energy while the3
symbols denote stretching energy. Energies are expressed in
trary units. Horizontal axes are volume fractionF. Graph~a! shows
local stretching energy densityLs and bending energy densityLb vs
volume fractionF at or above this energy density from an embe
ding in four dimensions. Graph~b! shows the same quantities from
an embedding in five dimensions. In~a!, the solid line is a power
law fit to the bending energy density in the region between 3.
and 10% volume fraction, with scaling exponent21.02, and the
dashed line is a power law fit to the stretching energy density in
region between 2.0% and 9.0% volume fraction, with scaling
ponent20.75. In~b!, the solid line is a power law fit to the bendin
energy density in the region between 0.2% and 2.0% volume f
tion, with scaling exponent20.65, and the dashed line is a pow
law fit to the stretching energy density in the region between 0.
and 2.0% volume fraction, with scaling exponent21.26.
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singularities in a field may interact at long range. To explo
further the conditions and forms of this interaction see
worthwhile.
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APPENDIX: DERIVATION OF VIRIAL RELATION

Here we derive the relation between the energy sca
exponents and the virial ratio of bending to stretching en
gies on an elastic ridge. This derivation is a generalization
the derivation presented in Ref.@23#.

We assume for simplicity that on a ridge, the elastic be
ing energy is dominated by the contribution of the main c
vature accross the ridge, and this curvature is approxima
constant for the entire length of the ridge with a typical val
C. For a simple ridge of lengthX in a two-dimensional mani-
fold, the ridge curvature is significant in a band of widthw
51/C transverse to the ridge, so the total bending energy
the ridge is approximately

E b'mh2C2wX5mh2CX, ~A1!

TABLE I. Summary of simulational results. The first three co
umns list the geometry of the simulated sheet and the spatial
embedding dimensions. The next column lists the dimension of
spontaneousvertex structures. The next column tells whether t
observed scaling was conelike or ridgelike. The final column te
for the cases where the boundary conditions did not explicitly br
the three-dimensional symmetry of the cube, whether the en
minimum was a symmetric state in the manifold coordinates. T
six manifold geometries, in the order presented here, are: two p
disclinations in a square sheet, a single line disclination at one c
face, parallel line disclinations on opposite cube faces, perpend
lar line disclinations on opposite cube faces, toroidal connectivity
a three-dimensional manifold, and the attachments of the ce
points of opposite cube faces to each other.

Geometry m d
Vertex

Dimension Scaling
Spontaneous
asymmetry

Two sharp bends 2 3 n/a ridge n/a
2 4 n/a cone n/a

Isolated disclinations 3 4 n/a cone n/a
3 5 n/a cone n/a

i disclinations 3 4 n/a ridge n/a
3 5 n/a cone n/a

' disclinations 3 4 1 ridge n/a
3 5 n/a cone n/a

Torus 3 4 1 ridge no
3 5 0 cone yes

Bow 3 4 1 ridge no
3 5 0 cone yes
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wherem is the elastic modulus of the material andh is the
thickness.

If we assume that the ridge has a single dominant com
nent of strain that also extends for a typical widthw and has
typical valueg, then the total stretching energy of the ridg
is

E s'mg2wX5mg2X/C. ~A2!

We can write the total elastic energy along the ridge as

E'mX@h2C1g2C21#. ~A3!

Now, if we make a scaling ansatz,g;(XC)2a, the en-
ergy becomes
. A

re

c

n

. A

n,

th
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E;mX@h2C1X22aC2(2a11)#. ~A4!

We may now find the minimum energy balance by setting
derivativedE/dC equal to zero:

h22~2a11!X22aC2(2a12)50 ~A5!

⇒C;X21~h/X!21/(a11)

~A6!

⇒g;~h/X!a/(a11).
~A7!

From the first of the above equations, it is clear that the vi
ratio is related toa by Eb5(2a11)Es .
.P.
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